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Two test problems are presented to show the micro- and the macro-time behaviors
of the thermoelastic slab. The responses to a realistic set of pressure andtemperature pulse inputs simulating the interior ballistic type of action are
also presented.
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A finte elemcent approach is used in discretizing -

the szatia. as weIl as the ti'me variable. in each respectively. Since the' temnperature fields has no
interaction with the shear wave, the subs.equent

discretizse'on a ---oice of two different approximation anlss'il ietit tetont s)n (6).
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t-=ics .20th next section the mathematical model :42 t
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where 7is the- _nisxisl stress. To discretoze the spetial vlariable in (16) an:
2am,.; I) t Lrminste trijm S) yi'4elds (17) we 'used two ~rar~s a.. the Salerki. troce-
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xx tt The Galerkin Procedure
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7 ~~Approximate solutiorns -f(1CS and (17) 1 and T --an z-e
- tw :2 extpanded in terms the same spat al anproxima'- r =

.1x) in the following day.
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ix 1' 1 0c (t-C '0(i (20)
7x-t 3 7 t ' - (i * t 70= (13

T x) ~ . T. (t)

T'Z:1 3~T tC = (4) where FNnr+1 n is th-e numbner of internal nodes and

P. x) is oetinec as
where i. s tn.e t.nI:ness of the slab, 35 ="1/

2 anid h, are the hneat transfer =,oefficient-= ''c

an-c :-.e :czct :tr the material. . -

rlN-:)t.EN:l:- .o ' ?l-AO NS 0 h xx> i=0,1,2.... (21)

Ti f acilitate c:omputation the fo;llowing non-di-
7nens::ral n-ant:tzes are :nt-rodu::oA where h isa dimenai:nless length if the interval. A

-racnica' '"lst-"-ii)n or tne run-ction in (22- is given
--Tp I in Fioure 1.

-0 x -, - - - 15 For convenience we introduce the syrtola L and~~=7 0 \2u 2
Isuch tht thDOE in (16) and (17) ran be abbreviated

After overting tne equations into the non-dimensions1 asI

form o~ne '-ars3 are drtrped for ease of writing.
Thus, after some algebra, we have I.a),T) 0,

I2Z)

7x -'. T-= 0 (16) 0 ,T) =0
t2

Then the reite .. and R, tan be defined to ne
and

R, (a,?) and (3
- -- '' N \; 0(17) R ' -

Oxx -1 2'* 1 t

C-)+ u For the boundar*, conditions we abbreviate (13) and C13)
3C o2 To.2~ as

The boundary conditions reduce to 1 I1c , BI()-0 ad 4

x . :.03') - ft) -0 5 2C() - 0, 5 C T) - 0 .25)

T- 3 C - -qIS)1In the Galerking procedure we require that th-e

weighted residue to vanish with the weighting fir=ro::n

x - (rl,t) - taken as v.lx' , i.e.

where 3, 5 ~ , f~t)- f*/( ',.2 2, 0 .1 .'
0 j ''2.....1

For i - 1, (26) le*ads to after integration by parts and
som algebra.
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- I Performinq :he necessaryI integration in (27; and (321

i' (x)'u. (x)T (t)'3x! (27) Yields -he x-discretized equation of (U1).

To reat the term in the bracket in (27) the ther- (7+h) -T o
ma- ;cun-arv zonditions in '241 Cnd 25) wil2. be used.
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We demand that the weighted residue of R(O) and 1 4 1 T
RVl) varish. This statement, when (28) and (29) are 6 6 6
ised, :an re zasted int -- e olowing forr by intro-
iucinq a delta function in each term. _ 4 T2
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For i 2, f R2 P (X)i -I -0 (A) + [B I + X [HITi-f (35)
0 n

where (4., [A 2 , etc. are the moefficient natrices in

3y a similar calculation as above we obtain the x-dis- (33) and (34).
cretized equation of (12)

Central Difference Scheme

2 1 1 In this scheme the approximating functions P( X)

-1 2 -1 0j are quadratic instead of linear as in the case of the
Galerkin scheme. The weighting function is taken to be

-1 2 -1 3.5 (x-x.)
(3,

ILet

h2 - 1 2 - l) I i+1
2(x,t) " -P4 (x)O (t) (36)

i+1

4T(Xt) - i (x)Tj(t) (36)

6 6

1 4 
where

6 6T (x-.) (x-xj l

1 4 1 i Xj-1 (x -X ) -- x+)
6 6 6

(-j- j -1j+l

-1.(x) - (x -x )(x-x (37)

4 1! j(X-X. 1 ) (X-1 j+ 1 )

6 6(x-x. )x-x

1 '( (x j+lXj
- 
) x

6 j+ iIU+

graphical sketch of (31) is given in Figure 2

The residues are defined as:

6 4 1 F Ta 1 f "1. R-LI(0, T) andhi2 L2 (aT) (38)

6 66I hK and we require that

6 6 6 114 f R (x-x )dx - .0, j- 1,2. (39)

I ! Performing the operation specified in (39) yields

I I I T 0 (__ 2 T T )- I X A ) i x 06 6 6I Ch1 i- +  l +1 2) 1l1

1 0 ) (40 )

6 6 ( 2a -c ) + i + 
I  

0

h2 1- 1.~l2

(34)
The boundary conditions will be discretized as

follows. Applying (40) to the boundaries at x0, we
Equations (33) and (34) can be abbreviated as have

follows

Ch2  -T.2To-T I ) -0 (41)

/2 [A1)T + "l+N1 X2 ) )ED
I 
I + I 1H f (35)
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and settinq F0 1 2.

J R(O) d(x-O}),x - 0
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61g 0

0 n

from wh.Lch we can calculate T.I,

T 1 2h0IT + 2hB 1q (42) 8

ER 9 -LI

uhaituti ng (42) into (41) yields 0

I ), 28,
-[2T (l+hg.)-2T I + ('+ ) I _ 0

C I (45)

1 0
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0 0
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Ch

From (40, (42) and (44) we finally obtain the x-dis-
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where [E 1] rE ], etc. are the respective coefficient
matrices in (41) and (46). Notice the equations in M C K
(45) are of the same format as those in (35), only the (-l

2  
i-y +l _(-Xi1+Zi+,)+At K(yi-i4*y. i )

coefficient matrices are different.

THE TIME DOMAIN 6 (ili-i-i+4

Since Eqs. (35) and (47) are of the identical Rearranging,
format, only (35) will be discussed in detail. 22
Equation (35) can be further abbreviated as follows. At at 2 At At2

10 [01 4_AI 'X [nBra IiXe.)

(0] 
-01o t) 

F 2  1Br 

5

1 [
+1 It -(F. _+4F. +F (2

X2H
T  iLJ6 -- i~+.(2
1 [) [IJ [i 1 01 (01

Approximating the First Step

TFor the recurrence scheme to proceed, both and
ch y must be known. An approximation of y is obtained

+ 1 (48) by linear interpolation of the function y(t) over the

1 'AJ interval. i.e.

To further abbrevi.ate, write (48) as Yt otz 4(~l(3

Again requiring the weighted residue to vanish, i.e.Mj + Cj + Ky - F -0 (49) A
Mj+Cj+~-F-OAt

R N 1 (t)dt = 0

where v - other symbols are self-iden-
we have, after a lengthy calculation,

(N+n) ,

C A C + t''__[
tifiable. 6- + -tK)yl (L--K)vo+ (At) f (54)

2 3 1 2 6 o 3 -.

In discretizing the time domain we shall develop
the recurrence schemes via i) Galerkin and ii) back-
ward difference schemes. Backward Difference

In this scheme a quadratic interpolation between

Galerkin two successive time increments is used and the weight-
ing function is 5 (t-tj~)

Expanind y in an infinite series (61

The vanishing of the weighted residue yields

X NI t ) Y ., (M. 3 A t CF - ( 2 2t +C .T '1 (55 )
2 C)~4. 1-(2M+ _A + C +4t-+K) y, 1  -

-_It-tlIi t COMPUTTION AND DISCUSSION

where Ni(t) 4 In the previous sections methodologies based on

e-0, It-ti t at finite element approach have been developed to treat

the boundary value problem of the coupled PDE of
dynamic thermelasticity. See computational results

Abbreviating (49) as L(y) - 0 and define will be discussed.
R(y) L (v). Letting the weighted residue vanish Different combinations of the spatial and time
and performing the necessary integrations, we have discretization were implemented. In the graphs pre-

sented at the end of this paper a notation such as
"CD/BK" would mean central difference in spatial die-
cretization and backward difference in time discreti-
zation. The notation GK stands for Galerkin.

The parameters of the mathematical model are only
suqqestive values which would provide some idea about

lpew-



a realistic problem. Within this objective, we have A Modified Step Temperature Input. q(t) = 30(l-e'it

chosen the following set of parameters X, - 1.0,
-3 -2 Uncoupled Problem. Figure 6 shows the temperature

2 = 10 ( 0-, TO  1 2 profile for various times due to an input of a modified
There are two scales of time for the thermo- temperature step with amplitude 30, for the uncoupled

elastic problem. One time scale corresponds to the equation (X = 2 - 0). Since the thermal problem has
time of travel through the slab of a dilatational a long time scale, the result demonstrates that using
wave. The other is related to the time of diffusion At = 20 and 500 yields no significant difference.
phenomenon. The difference in magnitudes of these Figure 7 shows the time response at two different
two times span five orders of magnitude. The wave field points. On the same figure the instability of
travel time is unity in the non-dimensional time the Galerkin time discretization is demonstrated.
defined in Section 3. The "diffusion" time is about

Coupled Problem. Figure 8 and 9 are the results
105 non-dimensional units. Therefore, basically there in responses for the coupling specified by X2 = .01
exist two types of responses in this type of thermo-
elastic problem, which we shall call micro-time and and two values of XI = 0.1 and 10.0. It is observed
macro-time behavior respectively. Thus, the time in- that the temperature responses show significant
crements At used in the computation also differ by difference when the coupling parameter XI is 10.0,
similar orders of magnitude. which is an upper bound value.

Three test problems will be discussed: (1) re-
sponses to a unit-step stress f(t), (2) responses to Dual Pulses, f(t) - .1 te

- ' 
t g(t) = 8.1548 te

-'I
t

a unit temperature step g(t), (3) responses to both t
a stress and a temperature pulse, simulating the gas Simultaneous inputs of gas pressure and tempera-
pressure and temperature in a gun barrel. ture as approximated by the given set exponential func-

ft)=l-e'it tions yield responses at x - .2 in micro-time as shownA Modified Unit-Step Stress Input,~tin Figure 10. It is observed that the wave front
arrives at x - .2 at t = .2. The successive cycles of

Uncoupled Problem. The theoretical response wave travel are depicted by the ripples oscillating
(solution to the wave equation) of a slab to a unit- about a sean curve following the general input pulse
step stress input imposed at x - 0 is given in wave form.
Figure 3 by the rectangular waves for x = 0.24. This Figure 11 shows the micro-time response in the
theoretical answer is used for comparing the accura- temperature and the stress. For XI - 1.0 and X = .01
cies of the responses to the modified step computed 2
by the several -ombinations of At and Ix as exhibited the top figure shows that the coupling effect on
in the tabulation in Figure 3. This figure shows stress is minimal, whereas the lower figure shows that
that decreasing at and 4x improves the accuracy. the coupling has a strong effect on the wave-like tem-
The amplitude of the response using 6x - .05 and perature profile.
at - .002 matches the theoretical solution. Other Figure 12 and 13 show the macro-time temperature
combinations show deterioration of accuracy after one vs. time and the temperature profile under the action

or two cycles, of a dual stress and temperature input. Notice that
Figure 4 shows the comparison of the quality in macro-time the stress remaining is low. This is

of the computational results based on different due to the fact that the slab is free to expand.
discretization schemes. It is shown that CD/BK and
GK/UK give quite close results. In other words, the CONCLUSION
spatial discretizations by CD and GK do not yield
significantly different results. The backward scheme The theory and the implementation of a finite
in time introduces some artificial "damping, causing element methodology in solving the problem of the
inaccuracy, wher-as the Galerkin scheme in time couple dynamic thermoelastic slab has been established.
generates oscillations of the amplitude about the Test problems of a unit-step stress input as well as a
exact value. These oscillations can be reduced bv de- unit-step temperature input are used to exhibit the
creasing both At and &x. Figure 4 shows that using two different types of responses, namely, the Micro-
Ax - .05 and at - .02 reduces the oscillations when and the macro-time behavior of the slab. In the
compared to larger &x and At. The graphs showing the spatial discretization both the Galerkin scheme and
results of larger increments are omitted for the sake the central difference are satisfactory whereas the
of space. backward difference scheme is preferred in the time

discretization. A realistic set of the stress and the
Coupled Problem. Figure 5 shows the stress and temperature inputs, simulating the interior ballistics

the temperature response due to a modified =nit stress of a gun barrel, is used to generate responses.
applied at x - 0 and zero temperature input at x - 0
with coupling parameters A1 . .01 and 2  .1. ACXI2WLZDGKMT

It is shown the propagation of the stress wave and The authors Y. C. and H. G. gratefully acknowledge
also the temperature wave due to the coupling effect. the support of their work by Grant DAAG29-79-G-0052,
The solid lines show the wave front at various time Army Research Office.
instants. The dotted lines show the temperature wave
being synchronous with the stress wave. The magnitude REEENCES
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